Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 764
Filtrar
1.
J Phys Chem Lett ; 15(15): 4024-4030, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38577878

RESUMO

The nonaqueous electrolyte based on lithium hexafluorophosphate (LiPF6) is the dominant liquid electrolyte in lithium-ion batteries (LIBs). However, trace protic impurities, including H3O+, alcohols, and hydrofluoric acid (HF), can trigger a series of side reactions that lead to rapid capacity fading in high energy density LIBs. It is worth noting that this degradation process is highly dependent on the polarity of the solvents. In this work, a deep potential (DP) model is trained with a certain commercial electrolyte formula through a machine learning method. H3O+ is anchored with polar solvents, making it difficult to approach the PF6-, and suppressing the degradation process quickly at room temperature. Control experiments and simulations at different temperatures or concentrations are also performed to verify it. This work proposes a precise model to describe the solvation structure quantitatively and offers a new perspective on the degradation mechanism of PF6- in polar solvents.

2.
Blood ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38579286

RESUMO

The overall prognosis of acute myeloid leukemia (AML) remains dismal, largely due to the inability of current therapies to kill leukemia stem cells (LSCs) with intrinsic resistance. Loss of the stress sensor GADD45A is implicated in poor clinical outcomes but its role in LSCs and AML pathogenesis is unknown. Here we define GADD45A as a key downstream target of LGR4 oncogenic signaling and discover a regulatory role for GADD45A loss in promoting leukemia-initiating activity and oxidative resistance in LGR4/HOXA9-dependent AML, a poor prognosis subset of leukemia. Knockout of GADD45A enhances AML progression in murine and patient-derived xenograft (PDX) mouse models. Deletion of GADD45A induces substantial mutations, increases LSC self-renewal and stemness in vivo and reduces levels of reactive oxygen species (ROS), accompanied by decreased response to ROS-associated genotoxic agents (e.g., ferroptosis inducer RSL3) and acquisition of an increasingly aggressive phenotype upon serial transplantation in mice. Our single-cell CITE-seq analysis on patient-derived LSCs in PDX mice and subsequent functional studies in murine LSCs and primary AML patient cells show that loss of GADD45A is associated with resistance to ferroptosis (an iron-dependent oxidative cell death caused by ROS accumulation) through aberrant activation of antioxidant pathways related to iron and ROS detoxification such as FTH1 and PRDX1, upregulation of which correlates with unfavorable outcomes in AML patients. These results reveal a therapy resistance mechanism contributing to poor prognosis and support a role for GADD45A loss as a critical step for leukemia-initiating activity and as a target to overcome resistance in aggressive leukemia.

3.
J Agric Food Chem ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600745

RESUMO

With aggravated abiotic and biotic stresses from increasing climate change, metal-organic frameworks (MOFs) have emerged as versatile toolboxes for developing environmentally friendly agrotechnologies aligned with agricultural practices and safety. Herein, we have explored MOF-based agrotechnologies, focusing on their intrinsic properties, such as structural and catalytic characteristics. Briefly, MOFs possess a sponge-like porous structure that can be easily stimulated by the external environment, facilitating the controlled release of agrochemicals, thus enabling precise delivery of agrochemicals. Additionally, MOFs offer the ability to remove or degrade certain pollutants by capturing them within their pores, facilitating the development of MOF-based remediation technologies for agricultural environments. Furthermore, the metal-organic hybrid nature of MOFs grants them abundant catalytic activities, encompassing photocatalysis, enzyme-mimicking catalysis, and electrocatalysis, allowing for the integration of MOFs into degradation and sensing agrotechnologies. Finally, the future challenges that MOFs face in agrotechnologies were proposed to promote the development of sustainable agriculture practices.

4.
J Agric Food Chem ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38624165

RESUMO

Immunochromatography (ICA) remains untapped toward enhanced sensitivity and applicability for fulfilling the nuts and bolts of on-site food safety surveillance. Herein, we report a fortified dual-spectral overlap with enhanced colorimetric/fluorescence dual-response ICA for on-site bimodal-type gentamicin (Gen) monitoring by employing polydopamine (PDA)-coated AuNPs (APDA) simultaneously serving as a colorimetric reporter and a fluorescence quencher. Availing of the enhanced colorimetric response that originated from the PDA layer, the resultant APDA exhibits less required antibody and immunoprobes in a single immunoassay, which facilitates improved antibody utilization efficiency and immuno-recognition in APDA-ICA. Further integrated with the advantageous features of fortified excitation and emission dual-spectral overlap for the Arg/ATT-AuNCs, this APDA-ICA with a "turn on/off" pattern achieves the visual limits of detection of 1.0 and 0.5 ng mL-1 for colorimetric and fluorescence patterns (25- and 50-fold lower than standard AuNPs-ICA). Moreover, the excellent self-calibration and satisfactory recovery of 79.03-118.04% were shown in the on-site visual colorimetric-fluorescence analysis for Gen in real environmental media (including real river water, an urban aquaculture water body, an aquatic product, and an animal byproduct). This work provides the feasibility of exploiting fortified dual-spectral overlap with an enhanced colorimetric/fluorescence dual response for safeguarding food safety and public health.

5.
Anal Chem ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619494

RESUMO

How timely identification and determination of pathogen species in pathogen-contaminated foods are responsible for rapid and accurate treatments for food safety accidents. Herein, we synthesize four aggregation-induced emissive nanosilicons with different surface potentials and hydrophobicities by encapsulating four tetraphenylethylene derivatives differing in functional groups. The prepared nanosilicons are utilized as receptors to develop a nanosensor array according to their distinctive interactions with pathogens for the rapid and simultaneous discrimination of pathogens. By coupling with machine-learning algorithms, the proposed nanosensor array achieves high performance in identifying eight pathogens within 1 h with high overall accuracy (93.75-100%). Meanwhile, Cronobacter sakazakii and Listeria monocytogenes are taken as model bacteria for the quantitative evaluation of the developed nanosensor array, which can successfully distinguish the concentration of C. sakazakii and L. monocytogenes at more than 103 and 102 CFU mL-1, respectively, and their mixed samples at 105 CFU mL-1 through the artificial neural network. Moreover, eight pathogens at 1 × 104 CFU mL-1 in milk can be successfully identified by the developed nanosensor array, indicating its feasibility in monitoring food hazards.

6.
Biosens Bioelectron ; 255: 116235, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38579623

RESUMO

Multiplexed immunodetection, which achieves qualitative and quantitative outcomes for multiple targets in a single-run process, provides more sufficient results to guarantee food safety. Especially, lateral flow immunoassay (LFIA), with the ability to offer multiple test lines for analytes and one control line for verification, is a forceful candidate in multiplexed immunodetection. Nevertheless, given that single-signal mode is incredibly vulnerable to interference, further efforts should be engrossed on the combination of multiplexed immunodetection and multiple signals. Photothermal signal has sparked significant excitement in designing immunosensors. In this work, by optimizing and comparing the amount of gold, CuS@Au heterojunctions (CuS@Au HJ) were synthesized. The dual-plasmonic metal-semiconductor hybrid heterojunction exhibits a synergistic photothermal performance by increasing light absorption and encouraging interfacial electron transfer. Meanwhile, the colorimetric property is synergistic enhanced, which is conducive to reduce the consumption of antibodies and then improve assay sensitivity. Therefore, CuS@Au HJ are suitable to be constructed in a dual signal and multiplexed LFIA (DSM-LFIA). T-2 toxin and deoxynivalenol (DON) were used as model targets for the simulated multiplex immunoassay. In contrast to colloidal gold-based immunoassay, the built-in sensor has increased sensitivity by ≈ 4.42 times (colorimetric mode) and ≈17.79 times (photothermal mode) for DON detection and by ≈ 1.75 times (colorimetric mode) and ≈13.09 times (photothermal mode) for T-2 detection. As a proof-of-concept application, this work provides a reference to the design of DSM-LFIA for food safety detection.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Colorimetria , Imunoensaio , Metais
7.
Chemosphere ; 354: 141730, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38492682

RESUMO

In this study, Fe0@Fe3O4 was synthesized and used to remove U(VI) from groundwater. Different experimental conditions and cycling experiments were used to investigate the performance of Fe0@Fe3O4 in the U(VI) removal, and the XRD, TEM, XPS and XANES techniques were employed to characterize the Fe0@Fe3O4. The results showed that the U(VI) removal efficiency of Fe0@Fe3O4 was 48.5 mg/g that was higher than the sum of removal efficiency of Fe0 and Fe3O4. The uranium on the surface of Fe0@Fe3O4 mainly existed as U(IV), followed by U(VI) and U(V). The Fe0 content decreased after reaction, while the Fe3O4 content increased. Based on the results of experiments and characterization, the enhanced removal efficiency of Fe0@Fe3O4 was attributed to the synergistic effect of Fe0 and Fe3O4 in which Fe3O4 accelerated the Fe0 corrosion that promoted the progressively formation of Fe(II) that promoted the reduction of adsorbed U(VI) to U(IV) and incorporated U(VI) to U(V). The performance of Fe0@Fe3O4 at near-neutrality condition was better than at acidic and alkalic conditions. The chloride ions, sulfate ions and nitrate ions showed minor effect on the Fe0@Fe3O4 performance, while carbonate ions exhibited significant inhibition. The metal cations showed different effect on the Fe0@Fe3O4 performance. The removal efficiency of Fe0@Fe3O4 decreased with the number of cycling experiment. Ionizing radiation could regenerate the used Fe0@Fe3O4. This study provides insight into the U(VI) removal by Fe0@Fe3O4 in aqueous solution.


Assuntos
Ferro , Urânio , Água , Cloretos , Halogênios , Adsorção
8.
Chemosphere ; 354: 141587, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38494002

RESUMO

Electron transfer played key role in peroxymonosulfate (PMS) activation for heterogeneous Fenton-like catalysts (HFCs). However, the relationship between electron exchange capacity (EEC) and catalytic activity of HFCs has not been elucidated. Herein, thirteen HFCs reported in our previous studies were selected to measure their EEC via electrochemical methods and to investigate the correlation between EEC and catalytic activity for PMS. The results show that nitrogen-doped graphene oxide had much higher EEC (5.299 mM(e) g-1), followed by reduced graphene oxide (3.23 mM(e) g-1), nitrogen-doped biochar-700 (2.032 mM(e) g-1), graphene oxdie (1.789 mM(e) g-1), nitrogen-doped biochar-300 (1.15 mM(e) g-1), g-C3N4 (0.752 mM(e) g-1) and biochar (0.351 mM(e) g-1). For carbon materials, their catalytic activity was not determined by electron donor capacity (EDC), electron acceptor capacity (EAC) and EEC (EDC + EAC), but was linear correlation with |EDC-EAC| that can characterize the extent of HFCs reacting with PMS. The higher the |EDC-EAC| is, the higher the catalytic activity of HFCs is. For carbonaceous materials, their catalytic activity was not proportional to EAC, but had good linear correlation with EDC and |EDC-EAC|. The discrepancy between carbon materials and carbonaceous materials could be due to the different activation mechanisms. Further analysis found that there was no correlation between EEC and the reactive species derived from PMS, indicating that the produced reactive species was not only controlled by EEC. This study firstly elucidated the correlation between EEC and catalytic activity of HFCs, and |EDC-EAC| could be used as an index for evaluating the catalytic activity of HFCs.


Assuntos
Carvão Vegetal , Elétrons , Grafite , Peróxidos , Peróxidos/química , Carbono/química , Oxidantes , Nitrogênio/química
9.
Chemosphere ; 354: 141660, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38462181

RESUMO

Production of medium-chain fatty acids (MCFAs) from sewage sludge has dual effects on valuable sludge disposal and renewable energy generation, while low efficiency limits its application. Biochar addition is considered an effective method to improve MCFAs production. In this study, the influence of biochar adding strategies (i.e., adding biochar in acidification or chain elongation (CE) processes) on MCFAs production was explored. Results showed that by adding biochar in the acidification process, MCFAs accumulation increased by over 114%, accompanied by the highest carbon conversion efficiency (134.66%) and electron transfer efficiency of MCFAs (94.22%) by the terminal CE. Adding biochar before the acidification process better enriched CE bacteria (e.g., Paraclostridium) and strengthened the dominant metabolic pathway. In contrast, the biochar added before the CE process priorly enriched the bacteria capable of degrading organics, like unclassified_f__Dysgonomonadaceae, norank_f__norank_o__OPB41, and Acetobacterium. The differences in excessive ethanol oxidation and short-chain fatty acids accumulation induced by varied adding strategies might be responsible for this.


Assuntos
Carvão Vegetal , Ácidos Graxos , Esgotos , Esgotos/microbiologia , Anaerobiose , Ácidos Graxos Voláteis , Fermentação
10.
Lab Chip ; 24(8): 2272-2279, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38504660

RESUMO

A highly sensitive lateral flow immunoassay (LFIA) is developed for the enzyme-catalyzed and double-reading determination of clenbuterol (CLE), in which a new type of probe was adopted through the direct electrostatic adsorption of ultra-small copper-gold bimetallic enzyme mimics (USCGs) and monoclonal antibodies. In the assay, based on the peroxidase activity of USCG, the chromogenic substrate TMB-H2O2 was introduced to trigger its color development, and the results were compared with those before catalysis. The detection sensitivity after catalysis is 0.03 ng mL-1 under optimal circumstances, which is 6-fold better than that of the traditional Au NPs-based LFIA and 2-fold greater than that before catalysis. This approach was successfully applied to the detection of CLE in milk, pork and mutton samples with an optimum assay time of 7 min and best catalytic time of 80 s, after which satisfactory recoveries of 98.53-117.79% were obtained. Cu-Au nanoparticles as a signal tag and the use of their nanozyme properties are the first applications in the field of LFIA. This work can be a promising exhibition for the application of a cheaper substitute for HRP, ultra-small bimetallic enzyme mimics, in LFIAs.


Assuntos
Clembuterol , Nanopartículas Metálicas , Limite de Detecção , Cobre , Ouro/química , Peróxido de Hidrogênio , Nanopartículas Metálicas/química , Catálise , Imunoensaio/métodos
11.
Chemosphere ; 353: 141586, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38452980

RESUMO

Heterogeneous activation of peroxomonosulfate (PMS) has been extensively studied for the degradation of antibiotics. The cobalt ferrite spinel exhibits good activity in the PMS activation, but suffers from the disadvantage of low PMS utilization efficiency. Herein, the nanocomposites including FeS, CoS2, CoFe2O4 and Fe2O3 were synthesized by hydrothermal method and used for the first time to activate PMS for the removal of sulfamethoxazole (SMX). The nanocomposites showed superior catalytic activity in which the SMX could be completely removed at 40 min, 0.1 g L-1 nanocomposites and 0.4 mM PMS with the first order kinetic constant of 0.2739 min-1. The PMS utilization efficiency was increased by 29.4% compared to CoFe2O4. Both radicals and non-radicals contributed to the SMX degradation in which high-valent metal oxo dominated. The mechanism analysis indicated that sulfur modification, on one hand, enhanced the adsorption of nanocomposites for PMS, and promoted the redox cycles of Fe2+/Fe3+ and Co2+/Co3+ on the other hand. This study provides new way to enhance the catalytic activity and PMS utilization efficiency of spinel cobalt ferrite.


Assuntos
Óxido de Alumínio , Cobalto , Compostos Férricos , Óxido de Magnésio , Nanocompostos , Sulfametoxazol , Peróxidos
12.
Anal Chem ; 96(12): 5046-5055, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38488055

RESUMO

Bimodal-type multiplexed immunoassays with complementary mode-based correlation analysis are gaining increasing attention for enhancing the practicability of the lateral flow immunoassay (LFIA). Nonetheless, the restriction in visually indistinguishable multitargets induced by a single fluorescent color and difficulty in single acceptor ineffectual fluorescence quenching due to the various spectra of multiple different donors impede the further execution of colorimetric-fluorescence bimodal-type multiplexed LFIAs. Herein, the precise spectral overlap-based donor-acceptor pair construction strategy is proposed by regulating the size of the nanocore, coating it with an appropriate nanoshell, and selecting a suitable fluorescence donor with distinct colors. By in situ coating Prussian blue nanoparticles (PBNPs) on AuNPs with a tunable size and absorption spectrum, the resultant APNPs demonstrate efficient fluorescence quenching ability, higher colloidal stability, remarkable colorimetric intensity, and an enhanced antibody coupling efficiency, all of which facilitate highly sensitive bimodal-type LFIA analysis. Following integration with competitive-type immunoreaction, this precise spectral overlap-supported spatial separation traffic light-typed colorimetric-fluorescence dual-response assay (coined as the STCFD assay) with the limits of detection of 0.013 and 0.152 ng mL-1 for ractopamine and clenbuterol, respectively, was proposed. This work illustrates the superiority of the rational design of a precise spectral overlap-based donor-acceptor pair, hinting at the enormous potential of the STCFD assay in the point-of-care field.


Assuntos
Clembuterol , Nanopartículas Metálicas , Ouro , Imunoensaio , Fenômenos Químicos , Limite de Detecção
13.
Front Plant Sci ; 15: 1305358, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38529067

RESUMO

Introduction: Early detection of leaf diseases is necessary to control the spread of plant diseases, and one of the important steps is the segmentation of leaf and disease images. The uneven light and leaf overlap in complex situations make segmentation of leaves and diseases quite difficult. Moreover, the significant differences in ratios of leaf and disease pixels results in a challenge in identifying diseases. Methods: To solve the above issues, the residual attention mechanism combined with atrous spatial pyramid pooling and weight compression loss of UNet is proposed, which is named RAAWC-UNet. Firstly, weights compression loss is a method that introduces a modulation factor in front of the cross-entropy loss, aiming at solving the problem of the imbalance between foreground and background pixels. Secondly, the residual network and the convolutional block attention module are combined to form Res_CBAM. It can accurately localize pixels at the edge of the disease and alleviate the vanishing of gradient and semantic information from downsampling. Finally, in the last layer of downsampling, the atrous spatial pyramid pooling is used instead of two convolutions to solve the problem of insufficient spatial context information. Results: The experimental results show that the proposed RAAWC-UNet increases the intersection over union in leaf and disease segmentation by 1.91% and 5.61%, and the pixel accuracy of disease by 4.65% compared with UNet. Discussion: The effectiveness of the proposed method was further verified by the better results in comparison with deep learning methods with similar network architectures.

14.
Sci Total Environ ; 926: 171708, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38494015

RESUMO

Current problems of existing heavy metal-removing technologies, especially for nanomaterials-based ones, are typically single metal ion-specific, high-cost and collected difficult. Herein, facile modification of commercial sulfur creates a versatile adsorbent platform to address challenges. The versatile adsorbent can be easily prepared through solvothermal treatment of a saturated commercial sulfur solution, followed by water precipitation on a commercial foam that eliminates the need for separation. Interestingly, the solvothermal treatment endows the resulting nanosulfur with sulfate acid groups (hard Lewis base), sulfur anions (soft base), and sulfite groups (borderline base), promising the coordination of all types of heavy metal ions (Lewis acids). As such, this versatile adsorbent with well-distributed adsorption sites exhibits highly effective heavy metal adsorption capacity towards diverse heavy metal ions for both single-component and multi-component adsorption, including soft, hard, borderline Lewis metal ions, with ultra-high adsorption ability (e.g., 903.79 mg g-1 for Cu2+). These findings highlighted the potential of this low-cost sulfur-based adsorbent to address the arising challenges in ensuring clean water.

15.
J Agric Food Chem ; 72(9): 4493-4517, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38382051

RESUMO

With the global limited food resources receiving grievous damage from frequent climate changes and ascending global food demand resulting from increasing population growth, perovskite nanocrystals with distinctive photoelectric properties have emerged as attractive and prospective luminogens for the exploitation of rapid, easy operation, low cost, highly accurate, excellently sensitive, and good selective biosensors to detect foodborne hazards in food practices. Perovskite nanocrystals have demonstrated supreme advantages in luminescent biosensing for food products due to their high photoluminescence (PL) quantum yield, narrow full width at half-maximum PL, tunable PL in the entire visible spectrum, easy preparation, and various modification strategies compared with conventional semiconductors. Herein, we have carried out a comprehensive discussion concerning perovskite nanocrystals as luminogens in the application of high-performance biosensing of foodborne hazards for food products, including a brief introduction of perovskite nanocrystals, perovskite nanocrystal-based biosensors, and their application in different categories of food products. Finally, the challenges and opportunities faced by perovskite nanocrystals as superior luminogens were proposed to promote their practicality in the future food supply.


Assuntos
Compostos de Cálcio , Análise de Alimentos , Nanopartículas , Óxidos , Titânio , Estudos Prospectivos , Qualidade dos Alimentos
16.
ACS Appl Mater Interfaces ; 16(9): 11251-11262, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38394459

RESUMO

Nanozyme has been proven to be an attractive and promising candidate to alleviate the current pressing medical problems. However, the unknown clinical safety and limited function beyond the catalysis of the most reported nanozymes cannot promise an ideal therapeutic outcome in further clinical application. Herein, we find that ferric maltol (FM), a clinically approved iron supplement synthesized through a facile scalable method, exhibits excellent peroxidase-like activity than natural horseradish peroxidase-like (HRP) and commonly reported Fe-based nanozymes, and also shows high antibacterial performance for methicillin-resistant Staphylococcus aureus (MRSA) elimination (100%) and wound disinfection. In addition, with added effects inherited from contained maltol, FM can accelerate skin barrier recovery. Therefore, the exploration of FM as a safe and desired nanozyme provides a timely alternative to current antibiotic therapy against drug-resistant bacteria.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Pironas , Desinfecção , Compostos Férricos/farmacologia , Peroxidase do Rábano Silvestre , Catálise , Antibacterianos/farmacologia , Peróxido de Hidrogênio , Peroxidase
17.
J Med Chem ; 67(5): 3419-3436, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38385428

RESUMO

Androgen receptor (AR) antagonists play important roles in the treatment of castration-resistant prostate cancer (CRPC). The glucocorticoid receptor (GR) upregulation leads to drug resistance for clinically used antiandrogens. Therefore, blocking AR/GR signaling simultaneously has become an efficient strategy to overcome the drug resistance of CRPC. Our previous work indicated that Z19 could inhibit the activity of both AR and GR. Herein, we optimized the structure of Z19 and identified GA32 as a potent AR/GR dual inhibitor. GA32 efficiently reduced the mRNA and protein levels of AR/GR downstream genes. GA32 efficiently inhibited the proliferation of enzalutamide resistance CRPC both in vitro and in vivo. GA32 could directly bind to AR and GR, and the predicted binding modes for GA32 with AR/GR suggested that GA32 binds to the AR or GR hormone binding pocket. This work provides a potential lead compound with dual AR/GR inhibitory activity to conquer the drug resistance of CRPC.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Receptores Androgênicos , Masculino , Humanos , Receptores Androgênicos/metabolismo , Antagonistas de Androgênios/farmacologia , Antagonistas de Androgênios/uso terapêutico , Neoplasias de Próstata Resistentes à Castração/metabolismo , Receptores de Glucocorticoides/metabolismo , Resistencia a Medicamentos Antineoplásicos , Antagonistas de Receptores de Andrógenos/farmacologia , Antagonistas de Receptores de Andrógenos/uso terapêutico , Nitrilas/uso terapêutico , Linhagem Celular Tumoral
18.
Water Res ; 253: 121313, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38364462

RESUMO

Adsorption is a unit operation process with broad applications in environmental, pharmaceutical, and chemical fields, with its most significance in environmental fields for water and wastewater treatment. Adsorption involves continuous/batch modes with fixed/dispersed adsorbents, leading to diverse systems. The adsorption kinetic models provide essential insights for effectively designing these systems. However, many adsorption models are semi-empirical/empirical, making it challenging to identify the adsorption mechanisms. Additionally, a consistent method for modelling the adsorption kinetics of different processes would be helpful for the comparison and analysis of various adsorption systems, but no such unified model is available. In epidemiological modeling, populations are often categorized into susceptible, infected, and removed individuals, simplifying disease transmission dynamics without considering individual-level movement intricacies. Likewise, we have employed a similar approach within adsorption systems, classifying adsorbates into absorbable, adsorbed, and removed (to the effluent) segments, thus developing the Monolayer-Absorbable-Adsorbed-Removed (MPQR) kinetics model. This model is applicable to continuous/batch adsorption systems, regardless of whether fixed or dispersed adsorbents are employed. The model was validated using experimental data across water/wastewater treatment, drug separation/purification, metal recovery, and desalination. The results showed that our model successfully fitted the kinetic data from various adsorption systems. It outperformed commonly used models for continuous/batch adsorption. The model allowed us to directly compare the parameters among various adsorption processes. The solving method based on Excel was provided and can be used by the researchers. Our model offers a versatile and unified approach to model adsorption kinetics, enabling the analysis and design of various adsorption systems.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Humanos , Adsorção , Modelos Epidemiológicos , Águas Residuárias , Cinética , Purificação da Água/métodos , Água/análise , Poluentes Químicos da Água/análise , Concentração de Íons de Hidrogênio
19.
Food Chem ; 444: 138678, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38330598

RESUMO

Conventional "all-in-one" methods for multi-component active packaging systems are not wholly adequate for fresh food. Given the need for multifunctional properties, introducing halloysite nanotubes (HNTs) could be a promising way to achieve controllable release of active ingredients while endowing with pH-sensitive performance. Here, we pioneered a GRAS composite with multifunctional properties, employing natural HNTs as a nanocarrier, citral (Cit) as an active antimicrobial agent, and myricetin (Myr) for monitoring freshness. The Cit-HNTs-Myr had excellent DPPH, ABTS and ·OH radical scavenging capacity, dual-model (contact and fumigant) antibacterial properties, and pH-sensitive performance. Subsequently, a smart tag prepared by dipping cellulose fibers into Cit-HNTs-Myr, which extended the shelf life of shrimp and blueberries, and provided freshness information for the shrimp. These results demonstrate the applicability of Cit-HNTs-Myr in the preservation of perishable goods and freshness monitoring.


Assuntos
Anti-Infecciosos , Nanotubos , Argila/química , Antibacterianos/farmacologia , Nanotubos/química , Conservação de Alimentos , Embalagem de Alimentos
20.
Chemosphere ; 352: 141398, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38342147

RESUMO

Hydroxyapatite has a high affinity to uranium, and element doping can effectively improve its adsorption performance. In this study, magnesia-silica-fluoride co-doped hydroxyapatite composite was prepared by hydrothermal method, and the effect of single-phase and multiphase doping on the structure and properties of the composites was investigated. The results showed that the specific surface area of Mg-Si-F-nHA composites increased by 63.01% after doping. Comparing with nHA, U(VI) adsorption capacity of Si-nHA, Mg-Si-nHA and Mg-Si-F-nHA composites increased by 13.01%, 17.39% and 22.03%, respectively. The adsorption capacity of Mg-Si-F-nHA composite reached 1286.76 mg/g. Adsorbent dosage and pH obviously affected U(VI) adsorption, and the experimental data can be fitted well by PSO and Sips models. The physicochemical characterization before and after adsorption suggested that complexation, ion exchange and precipitation participated in uranium adsorption. In conclusion, different elements doping can effectively improve the uranium adsorption properties of hydroxyapatite composites.


Assuntos
Fluoretos , Urânio , Dióxido de Silício , Óxido de Magnésio , Urânio/análise , Adsorção , Durapatita/química , Concentração de Íons de Hidrogênio , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...